National Centre for Information Technology
64, Kalaafaanu Hingun, Male’ City, Republic of Maldives

eFaas Single-Sign On Integration

(Developer Portal)

Documentation Version 2.2
Last updated: 02" November 2023

Page 1 of 30

National Centre for Information Technology
64, Kalaafaanu Hingun, Male’ City, Republic of Maldives

Contents
T oo [V Tt o] o P TSP T P T SO SPUPR PP 4
=108 01 g Y] o =4V SRR 4
(CT=] AT oY =] =] g =T PSP 5
IMPOITANT URLS ...ttt ettt ettt et ettt ettt ettt et eeeeee et eeeeeeeeeeeeeeeeeeeeesenensnenennnsnnnsnnns 5
ClIENT CrEatiON ...ttt et s et e bt e st e e bt e e sab e e s bt e e sabeesabeeeameeesabeeeaseeesnreesaneeenareas 5
(=13 = I ole] o LTS 6
Y= 100Y o] LI U R =T @1 - 110 LR SR 7
€FQaS INTEEIAtioN OVEIVIEWeeiiiiiiiii ettt ettt e e e e sttt et e e e e e s st bbeeeeeeeessanbbbaeeeeesssannsanaaaeessenanns 10
AULNOTIZATION FIOWS ...ttt et et e st e e et e st e e sab e e sabeesabeeesabeesneeesnneas 11
T} { oo [V Tt Te] o WP TSRS P TP PRSP PPTRPPOT 11
[V2T T I =1 o YRS 11
Authorization Code FIOW 4 PKCEc..coiiiiiiiieieei ettt ettt st sttt beenree 11
Overall AUTNOIZATION FIOW ...co.eeiiiiiiiiiieeeeee ettt ettt et e st e s bt e e sae e e sabeeesneeesareeeas 12
IMIPORTANT . eetetttttttttttttttetettt ettt et eee et et et et e eee et et et et eeee et st et et et et se st e e e e se e e e e ee s e e e s e s e e e s e e e e e e e s e sesseesssesnnnnnsnsnsnnnnnnns 13
Sample Requests FOr HYDIid FIOWoooiiiiiiic ettt e e te e s et e e are e e e e aree e e 14
AULhENTICATION REGUESTveieceiiee ettt et e e et e e e st e e e e e bt e e e e s aaaeeeeaasteeesansaeeeeansteeesansres 14
A NOtE aDOUL STAtE PArAMELEN . .eviiiiieee e e e e ae e e e s te e e e s re e e e s nreeeennnres 15
Jle) T I =T T8 =T PSPPSR 16
Sample Requests For Authorization Code + PKCEccccueiiiiiieiiiiiiie et e e stee e svee e s e e e sevee e e 17
AULNENTICATION REGUESTeviiiiiiiee ettt e et e e et te e e e st e e e e e bt e e e e s aabeeeeanstaeeeansseaeeanstesesannres 17
o] =TT 2 =T UL USSP 18
TOKEN VAlIdAtION ..eeeneiiiitie ettt et ettt e e st e s bt e e s ab e e sabeeesabeesabeeeabbeesabeeennbeesareas 19
RELFIEVING USEI INFO 1ttt et e e e st e e e st e e e s s bbaeeesasbeeeesabeeeesnbeeessnnsenas 20
RETFHEVING USEI PROTOeiiiiiieii ettt ettt e e e st e e e e et e e e e e bt e e e s eabaeeeesbaeesenbaeesennteneeenrenas 20
Tracking changes to User INfOrmMatioNn..........cooiiiii ittt e e e ar e e e et e e e e eanaaeeean 20
RNt o 11T = o] =] o TSP 21
INEFOTUCTION Lttt et s e et e e st e e s be e e sab e e s bt e e sabeesabeeesabeesabeesaneeesabaeennes 21
LT =To (U T I T PPP O UPP PSP UPPPPRUPIRE 21
REFreSh TOKEN REQUEST ... viiie ettt ettt e ettt e e e e ctte e e e ette e e e ebte e e s ebteeaesstseaeesteeeeessneesaseneananses 21
(oY of=qTa Y= A U LY =T o @ 1V SRR PPPPPPPPPPPPPRPPRS 22
=10 0] o] LI =T LU= AR 22

Page 2 of 30

National Centre for Information Technology
64, Kalaafaanu Hingun, Male’ City, Republic of Maldives

COMMON IMISTAKES ...ttt ettt et e bt e st e st e e eme e e sab e e e be e e sareesaneeesaseesareeenenesareesnnes 22
Y TaT = LI = o T O LU PSR RR 23
T} oo [¥ Tt o] o TSP PP PRSPPI 23
Prerequisite (For Server Side Applications ONIY)cccueeeieiiiiie et 23
2T Tol el g F= T a1 aT=] T o 11 | USSR 23
Front Channel IOBOUL.......coouiiiii ettt e e st e e s s te e e e s bee e e s sbtaeeesaneeeeennses 23
Browser-Based JavaScript CHENESc.uiii ittt e et e e e eare e e e e bae e e e e rte e e s eantee e e ennes 24
eFaas One-Tap Login - Third Party Apps INtegrationcceecveiiiiiiiie e 25
INEFOTUCTION .ttt et et s bt e st e e bt e e s bt e s be e e s abeesbeeesabeesabeeeanseesaneeesnneas 25
OVEIAI FIOW .ttt ettt et et s e s ebe e e s b e st e e e sateesabe e e beeesabeesaseeesabeesareeeneeesareeennes 26
OneTap Login - Third Party ApPps INtEEIratioN........cc.eeiiiiiiie ettt e e e e iee e e e earee e e 27
= =To TN Lo TP PPPPPRPPPPPR 27
T g Yo IT R =Y o N = 1A oY Y] =T o LSRR 27
TROUBLESHOOTING COMMON ERRORSceiiiiiiititititiiitietitttetteeteteteeeeteeeeeeeeeaeeesesesesesesesssessnssssesssssennnsnnnnes 28
BEFORE DEPLOYING TO PRODUCTION......cutttttttttutterttteetteeteeeeerereeeeeeeeeeeeeeeeeeeeeeeeeseeeeeeeeeeereeeesresnemrseressesmsnne 29
FURTHER READINGceiuiiiieettetteeit ettt ettt sht e st sttt et e bt e s bt e sat e eate et e e b e enbeesheesaeesanesabeeabeenbeenneesnees 30

Page 3 of 30

National Centre for Information Technology
64, Kalaafaanu Hingun, Male’ City, Republic of Maldives

Introduction

eFaas is an openid connect single sign-on which provides a secure authentication process and a consent
based mechanism to share the user data.

This document is intended to guide you through the process of eFaas integration.

Terminology

Relying Party (Client)

Application trying to authenticate the user

User Anyone who is using eFaas to authenticate themselves to other
applications
JWT(JSON Web Token) A self-contained and digitally signed JSON string that contains

information about the authentication event and user.

access_token

JWT that is used to grant access to protected resources

id_token JWT that contains information about authentication event and can
optionally contain user information

Code Authorization code that can be exchanged for an id_token and
access_token and/or refresh token

Discovery Document The end point that returns urls and information associated with eFaas

Server side client

Relying parties that can keep a client secret confidentially and will
maintain a session of their own after authorization (eg: MVC
applications that use cookies to maintain session)

Non Server side client

Relying parties that cannot store a client secret confidentially and will
depend entirely on eFaas for maintaining session (eg: Single page
Application)

Page 4 of 30

National Centre for Information Technology
64, Kalaafaanu Hingun, Male’ City, Republic of Maldives

Getting Started
Important URLs

Developer Base https://developer.gov.mv/efaas

URL

Production Base | https://efaas.gov.mv

URL

Discovery {efaas base url}/.well-known/openid-configuration
Document Url

Client Creation
When submitting client creation form, make sure you have provided the following information:

e Correct grant type

e Redirect URIs

e Post logout URI

e Backchannel or front channel logout URI (For server side applications only)
e Scopes required by your application

e If you require to refresh tokens

After submitting the client creation form, you will receive client credentials for both development and
production environment. A client credential consists of:

Client Id A unique identifier issued to the consumer to identify itself to eFaas

Client Secret A shared secret established between the eFaas and consumer

Page 5 of 30

https://developer.egov.mv/efaas
https://efaas.gov.mv/
https://developer.egov.mv/efaas/.well-known/openid-configuration

National Centre for Information Technology
64, Kalaafaanu Hingun, Male’ City, Republic of Maldives

eFaas Scopes

eFaas scopes are used to indicate what user information (user claims) will be made available from eFaas
to the Relying Party (Client).

Relying Parties should only request the minimum number of scopes that would fulfil their application’s
requirements.

The following is a list of available scopes in efaas

NOTE: openid and efaas.profile will be assigned to all clients by default. Also the legacy profile scope

will continue to work until we migrate all the current efaas clients to use the new scopes.

openid

efaas.profile

efaas.email

efaas.mobile
efaas.birthdate
efaas.photo
efaas.work_permit_status
efaas.passport_number
efaas.country
efaas.permanent_address

Page 6 of 30

National Centre for Information Technology
64, Kalaafaanu Hingun, Male’ City, Republic of Maldives

Sample User Claims

The following tables show details of claims associated with each eFaas scope.

Scope: efaas.openid

Claim name Description Type Example
sub Unique user key assigned to the | string 178dedf2-581b-4b48-
user 9d73-770f302751dc
Scope: efaas.profile
Claim name Description Type Example
first_name First name of the user string Mariyam
middle_name Middle name of the user string Ahmed
last_name Last name of the user string Rasheed
first_name_dhivehi First name of the user in Dhivehi | string S5x3
(Maldivians only) i
middle_name_dhivehi | Middle name of the user in string 3325
Dhivehi (Maldivians only)
last_name_dhivehi Last name of the user in dhivehi | string P 1%
(Maldivians only) -
gender Gender of the user string M/ F
idnumber Identification number of the string A000111 / WP941123 /
user LA110011
e National ID number for
Maldivians
e Work permit number for
work permit holders
e Passport number for
other foreigners
verified Indicates if the user is verified boolean True / False
verification_type Type of verification taken by the | string biometric / in-person
user
last_verified_date The last date when the user was | date 6/26/2019 9:18:11 AM
verified either using biometrics | (M/dd/yyyy
or by visiting an eFaas h:mm:ss tt)
verification counter
user_type_description | Indicates the type of user string e Maldivian
e Work Permit
Holder
e Foreigner
updated_at The last date when the user date 6/15/2023 2:12:38 PM
information was updated (M/dd/yyyy
h:mm:ss tt)

Page 7 of 30

National Centre for Information Technology
64, Kalaafaanu Hingun, Male’ City, Republic of Maldives

Scope: efaas.email

Claim name Description Type Example
email Email of the user string ahmed_ali@gmail.com
Scope: efaas.mobile
Claim name Description Type Example
mobile Mobile number of the user string 9074512
country_dialing_code Dialing code of the registered string +960
number
Scope: efaas.birthdate
Claim name Description Type Example
birthdate Date of birth of the user date 12/20/1990
M/dd/yyyy
Scope: efaas.photo
Claim name Description Type Example
photo Photo of the user url https://efaas-api
egov.mv/user/photo
Scope: efaas.work_permit_status
Claim name Description Type Example
is_workpermit_active Boolean indicating if the work boolean boolean
permit is active (only applicable
to work permit holders)
Scope: efaas.passport_number
Claim name Description Type Example
passport Passport number of the user string 12/20/1990
Scope: efaas.country
Claim name Description Type Example
country_name Name of the country of the user | string Maldives
country_code ISO 3-digit code int 462
country_code_alpha3 ISO alpha3 code string MDV
country_dialing_code Dialing code of the country string +960

Page 8 of 30

National Centre for Information Technology
64, Kalaafaanu Hingun, Male’ City, Republic of Maldives

Scope: efaas.permanent_address

Claim name Description

Type

Example

permanent_address Permanent address of the user

String (JSON)

Given below

Note: JSON string escaping has been removed for readability

"AddressLinel": "Blue Light",
"AddressLine2": "",

"Road": "Road Name",
"AtollAbbreviation": "K",
"AtollAbbreviationDhivehi": "»",

"IslandName": "Male"",

n, ne¢?n

"IslandNameDhivehi": " 53",

n,ne -~ 2oy

"HomeNameDhivehi": "e > 5",

"Ward": "Maafannu",
"WardAbbreviationEnglish": "M",

"WardAbbreviationDhivehi": ">",

"Country": "Maldives",

"CountrylSOThreeDigitCode": "462",
"CountrylSOThreelLetterCode": "MDV"

Page 9 of 30

National Centre for Information Technology
64, Kalaafaanu Hingun, Male’ City, Republic of Maldives

eFaas Integration Overview

The following functionalities should be implemented for a successful eFaas integration:

Authentication request

Token request

Validating tokens

Retrieving user info from userinfo endpoint
Refreshing tokens if required

Logging the user out

Single sign-out

S B S o

eFaas One-Tap Login

Page 10 of 30

National Centre for Information Technology
64, Kalaafaanu Hingun, Male’ City, Republic of Maldives

Authorization Flows

Introduction
An authorization flow or a grant type describes the process by which a client obtains tokens from the
authorization server(eFaas).

Currently we support two types of authorization flows in eFaas. They are:

e Hybrid (For server-side applications)
e Authorization Code + PKCE (For non-server side applications. eg: SPAs and mobile applications)

Hybrid Flow

Hybrid flow is used by server-side applications that can keep a secret confidentially and maintain their
own session.

Authorization Code Flow + PKCE

This flow is mainly used by browser based applications like SPAs and mobile applications that cannot
keep a secret confidentially. However, Authorization Code + PKCE can be used by server side
applications as well.

Previously implicit flow was used for non-server side applications, however OAuth 2.0 Best Practices
now recommend against using this flow due to many risks such as returning access token in the URL.

Page 11 of 30

National Centre for Information Technology
64, Kalaafaanu Hingun, Male’ City, Republic of Maldives

Overall Authorization Flow

Browser Relying Party eFaas

User , !

i 1. Click login ..‘I' 2. Login Reguest ' :

i 3. Send authentication request E

! to eFaas with params i

i 4 Browser redirects to eFaas N -

i H Ll

i < G.Login screen shown < 5. Login or Consent screen returned if logged in

i T Enters credentials : 8 Posts credentials +_l

! | e qmmmmmmmmessssmmmmmmmmmmmmmmsenes

i 10.Consent screen shown Lt 9.Consent screen shown if not already consented

: o et i : 1

i 11.Grant consent N o 12 Post request for granting consent hi

i 13 Redirect browser to the callback url with code or

H P code and |1d_token depending on the response type

i 14.Browser sends a POST to redirect ur_Ii_ 15'%‘5?02:?1“::3%? ::;rz:mii;iken. j_

i with code/ code and id_token — - - -

i 16.id_token and access foken returned

' M- smss s e

i 17.Request user info from

i user info endpoint -

i 20_Show the user as logged in | | 19 Mark the user as authenticated - 18.Return user info

e L EELEL LR, W-mmmmmmmmmm s | Mmoo

The authorization steps for both hybrid and authorization code + PKCE are same with only differences in
parameters for authentication request and token requests. We will look at these requests in more detail
in the next section.

Page 12 of 30

National Centre for Information Technology
64, Kalaafaanu Hingun, Male’ City, Republic of Maldives

IMPORTANT

In the following sections we have described how to manually create authentication requests and
exchange authorization codes for tokens. However, we strongly recommend using openid connect or
OAuth libraries developed for the respective frameworks. These libraries provide extension methods for
logging in and logging out the users. They also handle PKCE challenges, token exchanges, generation and
validation of state and nonce parameters and load user info as well.

Page 13 of 30

National Centre for Information Technology
64, Kalaafaanu Hingun, Male’ City, Republic of Maldives

Sample Requests For Hybrid Flow

Authentication Request

URL: {efaas_base_url}/connect/authorize

Method: GET

Query Parameters

Description

client_id

The client id provided during client registration

redirect_uri

The URI that is registered at eFaas as a callback uri

response_type

Space delimited values to indicate what to receive from eFaas as a reponse.
For hybrid this should be one of

e codeid token
e codetoken
e codeid_token token

scope The scopes that the relying party requires from eFaas. The values should be
space delimited.
eg: openid efaas.profile

nonce A value that uniquely identifies the authorization request. It will be returned
in the id_token.

state This isa randomly generated string to prevent CSRF attacks and maintain state

between eFaas and RP. The value of state parameter will be returned by eFaas
during callback.

Sample Authentication Request

https://developer.gov.mv/efaas/connect/authorize?client id=def7£fc52-0761-4916-82e5-
90759d2£3589&redirect uri=https://myapp.gov.mv/signin-oidc&response type=code

id token&scope=openid profile&response mode=form post&nonce=nonce l23&state=state abc

Note: URL encoding is removed for readability

Page 14 of 30

National Centre for Information Technology
64, Kalaafaanu Hingun, Male’ City, Republic of Maldives

A note about state parameter
Please do not send static values in the state parameter.

For example&state=adminlLogin

State parameter must always be a random, unique and non-guessable. It should also be validated on
eFaas callback to prevent CSRF attacks.

If your application requires additional context data to be maintained between authentication request
and eFaas callback, you can store the information in session or the local storage of the browser with
state parameter as the key. You may refer to this link for the implementation details
https://auth0.com/docs/secure/attack-protection/state-parameters

Page 15 of 30

https://auth0.com/docs/secure/attack-protection/state-parameters

National Centre for Information Technology
64, Kalaafaanu Hingun, Male’ City, Republic of Maldives

Token Request
When you receive the callback after a successful authorization request, you can exchange the code for
an access token and in some cases a refresh token using the token endpoint

Method: POST

URL: {efaas_base_url}/connect/token

Content-Type: application/x-www-form-urlencoded

Params Description

client_id The client id provided during client registration
client_secret The client secret provided during client registration
grant_type The grant type in this case is authorization_code
code The authorization code received from eFaas
redirect_uri The URI that is registered at eFaas as a callback uri

Sample Token Request

client_id=abc44ec3-aa7b-4eab-a50e-4d18f17c3f62&client_secret=9fz11cd8-7bb8-40fa-b3eb-
bcbdc43439c3&grant _type=authorization code&code=12b2478a5b71d175de8c50327£c33491bb0b51
9491608627clcfObed6fb36l0d&redirect uri=https://myapp.gov.mv/signin-oidc

Page 16 of 30

National Centre for Information Technology
64, Kalaafaanu Hingun, Male’ City, Republic of Maldives

Sample Requests For Authorization Code + PKCE

This flow introduces additional parameters called code_verifier, code_challenge and
code_challenge_method.

A code_verifier is a cryptographically random string that is generated and stored by the Relying Party.
The code_challenge is the base64 encoded and SHA256 hashed value of the code_verifier.

The code_challenge is sent in the authentication request to the eFaas and eFaas will store this value.
The code_verifier is sent to eFaas in the token request which will validated by eFaas. The token will only
be issued if the hash of the code_verifier matches with the code_challenge.

Authentication Request
URL: {efaas_base_url}/connect/authorize

Method: GET

Query Parameters Description

client_id The client id provided during client registration

redirect_uri The URI that is registered at eFaas as a callback uri

response_type Space delimited values to indicate what to receive from eFaas as a reponse.
For authorization code + PKCE it should be code.

scope The scopes that the relying party requires from efaas. The values should be
space delimited.
eg: openid efaas.profile

code_challenge This is the base64 encoded SHA256 hash of the code verifier

code_challenge_method Method used to hash the code_verifier (SHA256)

state This is a randomly generated string to prevent CSRF attacks and maintain
state between eFaas and RP. The value of state parameter will be returned
by eFaas during callback.

Sample Authentication Request

https://developer.gov.mv/efaas/connect/authorize?response type=code&client id=dc8311c9
-6c42-449e-a080-0d031d2612absstate=abcascope=openid efaas.profilesredirect uri=
https://myapp.gov.mv/signin-oidc&code_challenge=K29soCkThVHYUT-
r4uZtRMdTKb584072Lh83rd8MGgJkscode_challenge method=5256

Page 17 of 30

https://developer.egov.mv/efaas/connect/authorize?response_type=code&client_id=dc8311c9-6c42-449e-a080-0d031d2612ab&state=abc&scope=openid
https://developer.egov.mv/efaas/connect/authorize?response_type=code&client_id=dc8311c9-6c42-449e-a080-0d031d2612ab&state=abc&scope=openid
https://developer.egov.mv/efaas/connect/authorize?response_type=code&client_id=dc8311c9-6c42-449e-a080-0d031d2612ab&state=abc&scope=openid

National Centre for Information Technology

64, Kalaafaanu Hingun, Male’ City, Republic of Maldives

Token Request

When you receive the callback after a successful authorization request, you can exchange the code for
an access token and, in some cases a refresh token, using the token endpoint.

For Authorization Code + PKCE, code_verifier must be included in the token request.
Method: POST

URL: {efaas_base_url}/connect/token

Content-Type: application/x-www-form-urlencoded

Params Description

client_id The client id provided during client registration

client_secret The client secret provided during client registration. Client secret is not required for
non-server side applications.

grant_type The grant type in this case is authorization_code

code The authorization code received from eFaas

redirect_uri The URI that is registered at efaas as a callback uri

code_verifier The unhashed code_challenge

Sample Token Request

client_id=abc44ec3-aaTb-4eab-a50e-4d18£f17c3f62

&grant_type=authorization code&code=12b2478a5b71d175de8c50327£c33491bb0b519491608627cl
cfObed6fb36l0d&redirect_uri=https://myapp.gov.mv/signin-

oldcé&code verifier=eImN_fPyl2gbkUVrSVTrenoJYAThTS3M-aaQ3Lx45Kbs

Page 18 of 30

National Centre for Information Technology
64, Kalaafaanu Hingun, Male’ City, Republic of Maldives

Token Validation

The Relying Party must validate the JWTs received from eFaas (id_token, access_token).
We strongly recommend using middleware provided by your application’s framework or third-party
libraries for validating tokens. You can find a list of libraries for common programming frameworks at

the following link:

https://jwt.io/libraries

For further information, please refer to Openld Specification at:

https://openid.net/specs/openid-connect-core-1 0.html

Page 19 of 30

https://jwt.io/libraries
https://openid.net/specs/openid-connect-core-1_0.html

National Centre for Information Technology
64, Kalaafaanu Hingun, Male’ City, Republic of Maldives

Retrieving User Info

Although user info is available in the id_token, it is recommended to use the userinfo endpoint provided

by eFaas to retrieve the user info. Most of the openid connect libraries will do this automatically for you.
Method: GET

URL: {efaas_base_url}/connect/userinfo

Params Description
Header: Include the access token received after authentication
Authorization

Retrieving User Photo
Applicable only if the client has efaas.photo scope.

Method: GET

URL: {photo_url_from_user_info_json}

Params Description
Header: Include the access token received after authentication
Authorization

Tracking changes to User Information

Client applications are expected to keep a track of the updated_at user claim and update the user
information accordingly.

Page 20 of 30

National Centre for Information Technology
64, Kalaafaanu Hingun, Male’ City, Republic of Maldives

Refreshing Tokens

Introduction

If you are accessing a RESTful APl secured by eFaas, then you will require to refresh the access tokens, as
access tokens expire quickly. This can be done by using the refresh_token received during the initial
token request. When the refresh token request is successful, you will receive a new access_token and a
new refresh_token.

Prerequisite
To be able to use refresh tokens, the Relying Party must be assigned offline_access scope during client
registration. The Relying Party also needs to include offline_access scope in the authentication request.

Refresh Token Request

Method: POST

URL: {efaas_base_url}/connect/token

Content-Type: application/x-www-form-urlencoded

Params Description

client_id The client id provided during client registration

client_secret The client secret provided during client registration. Client secret is not
required for non-server side applications.

grant_type The grant type in this case is refresh_token

refresh_token The refresh_token received from initial token request

Sample Token Request

client_id=abc44ec3-aa7b-4eab-a50e-4d18f17c3f62&client_secret=9fz11cd8-7bb8-40fa-b3eb-
bcbdc43439c3&grant_type=refresh tokensrefresh token=EFC5388CF55A8368DCOB6IECB82E4250F3
359FDOF3EA23E52A4E502808A5AAS

Page 21 of 30

National Centre for Information Technology
64, Kalaafaanu Hingun, Male’ City, Republic of Maldives

Logging User Out

To log the user out of eFaas, send a GET request to endsession endpoint of eFaas with parameters in the
table below.

After a successful logout, the user will be redirected to the registered post_logout_redirect_uri.
Method: GET

URL: {efaas_base_url}/connect/endsession

Params Description

post_logout_redirect_uri The post logout redirect uri that was registered at efaas

Id_token_hint The id_token received during the authorization process

state This is for round tripping state between the relying party and
efaas

Sample Request
https://developer.gov.mv/efaas/connect/endsession?post logout redirect uri=ht
tps://efaasapp.gov.mv/oidc/signout&id token_hint=eyJhbGciOiJSUzIINiIsImtpZCI6
Ijc5MOE3N]B.eyJuYmYiOjE2MTQIMDAZ2MTAsImV4cCIOMTYXNDUwMDkx&state=state abc

Common Mistakes
e Providing access_token instead of id_token to the endsession endpoint.
e Incorrect post_logout_redirect_uri

The post_logout_redirect_uri must exactly match with the one configured for the client. No query
parameters should be passed to the post_logout_redirect_uri.

For example, if the post_logout_redirect_uri is https://efaasapp.gov.mv/oidc/signout, only
https://efaasapp.gov.mv/oidc/signout will be considered valid.

The following URLs will be considered INVALID:

e https://efaasapp.gov.mv/oidc/sighout/

e https://efaasapp.gov.mv/oidc/signout?param=one

Page 22 of 30

https://efaasapp.egov.mv/oidc/signout
https://efaasapp.egov.mv/oidc/signout
https://efaasapp.egov.mv/oidc/signout
https://efaasapp.egov.mv/oidc/signout
https://efaasapp.egov.mv/oidc/signout/
https://efaasapp.egov.mv/oidc/signout

National Centre for Information Technology
64, Kalaafaanu Hingun, Male’ City, Republic of Maldives

Single Sign Out

Introduction
A single sign-out is used to log out the user from all applications that’s sharing the same eFaas session, if
that session is terminated either by log out from one of the applications or log out from eFaas directly.

For server side applications, this is accomplished using back channel and front channel logout.

Prerequisite (For Server Side Applications Only)

Relying parties must register a back _channel_logout_uri or front_channel_logout_uri depending on how
they plan to implement this type of logout. The relying party must also store the eFaas session id when
persisting the user session

Back channel logout
A POST request will be sent from the eFaas server to the relying party’s registered
back_channel_logout_uri.

URL: { back_channel_logout_uri }

Method: POST

Content-Type: application/x-www-form-urlencoded

Content: logout_token= eyJhbGci0OiJSUzI1INiMOE3N]B.eyJuYmYiOj

The relying party should validate the logout_token and retrieve the eFaas session id (sid) in the token.
Remove the user session if sid matches with the sid in the user’s session. Once the session is removed,
the relying party must respond to eFaas with a 200 OK response.

Front channel logout
A GET request will be sent from the user's browser to the relying party’s registered
front_channel_logout_uri.

URL{ front_channel_logout_uri}
Method: GET

Query Parameter: logout_token= eyJhbGci0iJSUzI1INiMOE3NB.eyJuYmYiOj

The relying party should validate the logout_token and retrieve the eFaas session id (sid) in the token.
Remove the user session if sid matches with the sid in the user’s session.

Page 23 of 30

National Centre for Information Technology

64, Kalaafaanu Hingun, Male’ City, Republic of Maldives

Browser-Based JavaScript Clients

To handle single sign-out, these applications must implement monitoring for check_session_iframe
endpoint of eFaas. You can refer to the specifications at https://openid.net/specs/openid-connect-
session-1_0.html for implementing this feature.

If you’re are using oidc-client-js library (https://github.com/IdentityModel/oidc-client-js) this will be
already implemented for you.

Page 24 of 30

https://openid.net/specs/openid-connect-session-1_0.html
https://openid.net/specs/openid-connect-session-1_0.html
https://github.com/IdentityModel/oidc-client-js

National Centre for Information Technology
64, Kalaafaanu Hingun, Male’ City, Republic of Maldives

eFaas One-Tap Login - Third Party Apps Integration

Introduction
eFaas one-tap login allows users to log into third-party applications through eFaas Mobile Application,
without having to re-enter their credentials.

The following is a screenshot of eFaas Mobile Application, with a list of eFaas integrated services
displayed to the user. When a user clicks one of the service icons, they will be logged into the service
application without having to re-enter their eFaas credentials.

Welcome “E‘ @
Ali Mujuthaba

MY CARDS

NATIONAL DIGITAL IDENTITY CARD
REPUBLIC OF MALDIVES

NID Number

A*F%220
=2E
B

MY INFO
FAMILY HEALTH BUSINESS

DIGITAL SERVICES

=) &) e

Customs ... Makudi O ... AOS Online Dhirithi

@ = © &

Job Center CS Viuga SDFC Cus ... Transpor ..

Page 25 of 30

National Centre for Information Technology
64, Kalaafaanu Hingun, Male’ City, Republic of Maldives

Overall Flow
The following diagram shows the eFaas One-Tap login flow with Gov.Mv as the third-party application.

1. Efaas Mabile Application redirects to client application's
(Gov.mv) one-tap login url with efaas login code

(gov.mv/efaas-one-tap-login?efaas_login_code=12345)

A J

2. Client application redirects to efaas authorize endpoint with
efaas login code in the acr_values parameter

W {/authorize?acr_values=efaas_login_code 12345-abc)

Efaas Web

3. Redirects to client application's QAuth
callback_url if login is successful

v

i

Gov.Mv

Page 26 of 30

National Centre for Information Technology
64, Kalaafaanu Hingun, Male’ City, Republic of Maldives

OneTap Login - Third Party Apps Integration

Pre-requisite
All third-party applications must implement the following endpoint which will be called by the eFaas
Mobile Application for one-tap logins.

e Endpoint: {root_url}/efaas-one-tap-login
e HTTP Method: GET

Implementation Steps

1. eFaas Mobile application calls the one-tap endpoint of the third-party application with
‘efaas_login_code’ included as a query parameter (eg: https://gov.mv/efaas-one-tap-
login?efaas_login_code=a5d9a8ac-d583-41a7-8844-545dd608fad7)

2. The third-party application extracts the “efaas_login_code’ from the endpoint.

3. Add the “efaas_login_code" to the ‘acr_values’ parameter of efaas authorization url before redirecting
to efaas for authentication

client_id: CLIENT_ID,
redirect_uri: REDIRECT_URL,
response_type: RESPONSE_TYPE,
scope: "openid profile",

acr_values: "efaas_login_code:a5d9a8ac-d583-41a7-8844-545dd608fad7"

4. eFaas authenticates the user by validating the “efaas_login_code™ and redirects to third-party
application's callback url. The standard OAuth flow will continue from here.

Page 27 of 30

National Centre for Information Technology
64, Kalaafaanu Hingun, Male’ City, Republic of Maldives

TROUBLESHOOTING COMMON ERRORS

e After logout the user is not redirected back to the application
o Check if the PostLogoutURL is correct
o Check if the value passed to id_token_hint is the id_token and NOT access token

e 419 Page Expired error when redirecting to the application
o Exclude the redirect URL from CSRF protection. For Laravel applications refer to this link
https://laravel.com/docs/10.x/csrfttcsrf-excluding-uris

Page 28 of 30

https://laravel.com/docs/10.x/csrf#csrf-excluding-uris

National Centre for Information Technology
64, Kalaafaanu Hingun, Male’ City, Republic of Maldives

BEFORE DEPLOYING TO PRODUCTION

v" Make sure the following requests are working

v

O O O O

O

Authorization request

Token request

Refresh token request

Logout

Post logout redirection

Backchannel or front channel logout

Inform the production server IPs to be whitelisted, if hosting on a cloud based service.

Page 29 of 30

National Centre for Information Technology
64, Kalaafaanu Hingun, Male’ City, Republic of Maldives

FURTHER READING

e OAuth 2.0 RFC
o https://datatracker.ietf.org/doc/html/rfc6749
e OpenlD Connect Specifications

o https://openid.net/specs/openid-connect-core-1_0.html
e OAuth 2.0 Threat Model and Security Considerations
o https://datatracker.ietf.org/doc/html/rfc6819
e OAuth 2.0 Security Best Current Practice
o https://datatracker.ietf.org/doc/html/draft-ietf-oauth-security-topics

END OF DOCUMENTATION

Page 30 of 30

https://datatracker.ietf.org/doc/html/rfc6749
https://openid.net/specs/openid-connect-core-1_0.html
https://datatracker.ietf.org/doc/html/rfc6819
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-security-topics

	Introduction
	Terminology

	Getting Started
	Important URLs
	Client Creation

	eFaas Scopes
	Sample User Claims
	eFaas Integration Overview
	Authorization Flows
	Introduction
	Hybrid Flow
	Authorization Code Flow + PKCE

	Overall Authorization Flow
	IMPORTANT
	Sample Requests For Hybrid Flow
	Authentication Request
	A note about state parameter
	Token Request

	Sample Requests For Authorization Code + PKCE
	Authentication Request
	Token Request

	Token Validation
	Retrieving User Info
	Retrieving User Photo
	Tracking changes to User Information
	Refreshing Tokens
	Introduction
	Prerequisite
	Refresh Token Request

	Logging User Out
	Sample Request
	Common Mistakes

	Single Sign Out
	Introduction
	Prerequisite (For Server Side Applications Only)
	Back channel logout
	Front channel logout
	Browser-Based JavaScript Clients

	eFaas One-Tap Login - Third Party Apps Integration
	Introduction
	Overall Flow

	OneTap Login - Third Party Apps Integration
	Pre-requisite
	Implementation Steps

	TROUBLESHOOTING COMMON ERRORS
	BEFORE DEPLOYING TO PRODUCTION
	FURTHER READING

